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Concepts

Molecules

A combination of different kinds of atoms is known as a molecule. We have two
different types of molecules classified in terms of dipole moment, which are
Homonuclear and Heteronuclear molecules. Homonuclear molecules do not
possess a dipole moment, whereas Heteronuclear molecules possess a permanent
dipole moment. Diatomic molecules contain two atoms, and the distance between
them is known as the internuclear distance, as it connects the nucleus of the two
atoms.

Figure 1: Two atoms forming a molecule

As shown in figure 1, the two atoms that form a molecule have their own nucleus
and are separated by a distance r which is the internuclear distance between them.
Molecules are also classified based on their arrangement. The most common types
are linear, spherically top, symmetrically top, and asymmetrically top molecules,
which are discussed below in detail. These can be further classified based on



diatomic and polyatomic molecules. Diatomic molecules are molecules made up of
two atoms, whereas polyatomic molecules are molecules that contain more than
two atoms. In this report, we will be looking at diatomic linear molecules for the
most part.

Vibrational and Rotational Energy

Figure 2: Different energies possessed by the molecule

There are a total of three types of energies the molecule can possess. The first kind
of energy of a molecule is gained when an electron in an atom jumps from a higher
excited state to a lower excited state and releases photons as energy in the process.
The second kind of energy comes in the form of vibrational energy. As the nucleus
of these two atoms can vibrate in the direction of the arrows, as shown in figure 2,
they will possess some vibrational energy. Similarly, the entire system can rotate
about a given axis around its center of mass, and thus it will also possess some
rotational energy. Both these vibrational and rotational energies are quantized,
which is where the effects of quantum mechanics come into the picture. The levels
of energy in these molecules are greater than in an atom because they radiate light



in lower frequencies as compared to atoms, and thus the energy states are called
bands.

Molecular Spectroscopy

The analysis of all wavelengths of light emitted and absorbed by the given
molecule arising from the different energies of the molecule is known as Molecular
Spectroscopy, and the different wavelengths together are called the molecule's
spectra.

Types of Molecular Spectra

The types of molecular spectra can be classified as follows

1. Pure rotational spectra
- Rotational spectra arise due to the transition between rotational levels

shown in the figures below.



Figure 3: Rotation about the center of mass of the molecule

Figure 4: Absorption and Emission spectra

- Rotational spectra are observed in the Infrared (10-3 to 10-2) and
Microwave (10-2 to 10-1) spectra of the electromagnetic spectrum.

- The rotational energy of the molecule is given as 𝐸 =  𝐼ω2

- The rotational spectra only arise for heteronuclear molecules.
- It is used to find the internuclear distance between atoms and also the

moment of inertia of the atoms.

Molecule as a Rigid Rotator

The derivation for Molecule as a Rigid Rotator is as follows























When a transition happens between an upper layer J’ and a lower layer J’’,
then = 2B(J+1). There each of the lines is equispaced with a distance ofν
2B.



Non-rigid Rotator

For the non-rigid rotator, the rotational lines are not equidistant as the
molecule is not rigid. Therefore the modified rotational term becomes

F(J) = BJ(J+1) - DJ2(J+1)2

Here, D is the centrifugal distortion constant and is much smaller than B,
and thus the spacing between successive rotation levels decreases. The
wavenumber is now given by = 2B(J+1) - 2D(J+1)3. This shows that theν
separation between lines decreases slightly as J increases.

2. Vibrational Rotational Spectra
- Vibrational Rotational Spectra arise from transitions between

vibrational energy states associated with the same electronic states.
- The energy due to transition is again observed in the near-infrared

region of the electromagnetic spectrum.
- These spectra are only defined for molecules with permanent dipole

moment as they oscillate with the fluctuating electromagnetic field.
Thus they are shown by Heteronuclear molecules.

- These spectra are obtained in absorption.
- These spectra are divided into two bands which are the

fundamental(intense) band which has the highest frequency, and
overtones(weak), which have less frequency as compared to the
fundamental band.

Potential energy curve V(r) vs. r



Figure 6: Potential energy curve

We find the expression for this curve using the Taylor series expansion of
V(r) in (r-re). Which is given as

V(r) = V(re) + (r-re) r=re + (r-re)2/2! r=re + + (r-re)3/3!(∂(𝑉(𝑟)/∂𝑟) (∂2(𝑉(𝑟)/∂𝑟2)

r=re(∂3(𝑉(𝑟)/∂𝑟3)

As the first term has only rewe can set it equal to zero as we are interested in
finding the potential difference and not the potential. The second term is
minimum at r = re and thus won’t contribute much and can be neglected.

If we retain only the first term after that, we get V(r) = k(r-re)2/2, which we
can use to define the molecule and then solve Schrodinger’s Equation for the
molecule. Solving the equation, we get a form of Hermite differential



equation, and solving it gives us the solution in terms of the Hermite
Polynomial, which we restrict to positive integers and get the form of
Energy as

osc𝐸 =  ℎ𝑣 (ν + 1/2)

where is the vibrational quantum number. Here at = 0, we get the zeroν ν
point energy as osc/2.𝐸 =  ℎ𝑣

Spectrum

Now, we will look at the spectrum analysis of this oscillator. The vibration
terms for this oscillator are

G( ) = oscν 𝑣 /𝑐(ν + 1/2)

Where osc/c is the classical frequency and is known as the vibrational𝑣
constant and is denoted by . Thus we getω

G( ) =ν ω(ν + 1/2)

Where = 0,1,2,3… which gives us G( ) = 1/2 ,3/2 ,5/2 ,7/2 ,9/2 . If weν ν ω ω ω ω ω
calculate the wavenumber for successive rotational frequencies where ,∆ν = ±1
we observe that the only band obtained is at . However, there are still weak bandsω
present which cannot be explained by the above formulation. Thus we consider the
molecule as an anharmonic oscillator.

Molecule as an anharmonic oscillator

Now we will get the weak bands for the anharmonic oscillator by not taking
strictly and allowing other transitions to happen by which we first∆ν = ±1

change the approximation in the V(r) term by taking the first two terms instead of
just the first and then putting it in the Schrodinger equation giving us the energy
levels as



= e - e e
2𝐸(ν)  ℎ𝑐ω (ν + 1/2)  ℎ𝑐ω χ (ν + 1/2)

and the corresponding term values as

= e - e e
2𝐺(ν)  ω (ν + 1/2)  ω χ (ν + 1/2)

The zero point energy is again obtained by putting = 0 and thus we getν

= 0 - 0 0
2𝐺(0)  ω (ν)  ω χ (ν)

On equating the coefficients of power of we getν

= e - e e + …ω  ω  ω χ
0 0 = e e - … ω χ  ω χ

The wavenumber separation between two absorption bands is given as

= 0 - 0 0 - 2 0 0
2∆𝐺(ν + 1/2)  ω  ω χ  ω χ (ν)

The second difference is given by

= - 2 0 0
2∆2𝐺(ν + 1/2)  ω χ (ν)

Which determines the anharmonicity constant 0 0, and thus we also get weak ω χ
bands along the main band at .ω

Vibrational Frequency and Force Constant for Anharmonic
Oscillator

We know that the classical vibration is given as



osc= 1/2𝑣 π 𝑘/µ

where k is the force constant and is the reduced mass. Now we getµ

osc = e - e e - 2 e e )𝑣 (ν)  𝑐(ω  ω χ  ω χ (ν)

Thus, we can say as increases, the classical vibrational frequency oscν 𝑣 (ν)
decreases.

Isotope effect on vibrational levels

From the above equations for isotopes, the harmonic frequencies can be given as

osc = 1/2𝑣 (ν) π 𝑘/µ

osc = 1/2 ’𝑣 (ν') π 𝑘/µ

Therefore from the above equations we can get

osc / osc = =𝑣 (ν') 𝑣 (ν) µ'/µ ρ

Therefore the vibrational terms of these two isotopes are given by
=𝐺(ν)  ω(ν + 1/2)
=𝐺(ν') ρ ω(ν + 1/2)

Therefore the isotropic shift in the vibrational level is given as

- =𝐺(ν') 𝐺(ν) (ρ − 1) ω(ν + 1/2)

since < 1 the vibrational level of the heavier isotope are lower than theρ
corresponding levels of the lighter isotope.

If anharmonicity is taken into account, we get



= e - e e
2𝐺(ν)  ω (ν + 1/2)  ω χ (ν + 1/2)

= e - e e
2𝐺(ν')  ω (ν + 1/2)  ρ2ω χ (ν + 1/2)

Therefore, the isotropic shift in vibration now is given as

- = - e - 2 e e )𝐺(ν') 𝐺(ν) (ρ − 1)(ν + 1/2) (ρ2 − 1) (ω  ω χ (ν + 1/2)

since < 1 the vibrational level of the heavier isotope are lower than theρ
corresponding levels of the lighter isotope and the shift between corresponding
levels increases with increasing .ν

The band shift is given as∆ν

= (∆ν (ρ − 1)ω ν' −  ν'')

Thus for the fundamental band we have =1 and = 0 thereforeν' ν''

=∆ν (ρ − 1)ω

Therefore the shift increases as the value of increases. ν'

Molecule as vibrating rotator

The near-infrared spectra of molecules consist of bands composed of closed lines
arranged in a particular manner. In the series of lines that are not equidistant, a line
is missing at the center of the band. The missing line is known as the null line or
zero line. Furthermore, the lines show a rather poor tendency of convergence
toward the high-wave number side, and the band is said to be degraded towards the
low-wave number side, which is towards red. This observed structure suggests that
in a vibrational transition, the molecule also changes its rotational energy state, and
thus it should be treated as a vibrating rotator.



By ignoring any interaction between vibration and rotation of molecule, the
eigenstates of the vibrating rotator would be the sum of eigenvalues of the
anharmonic oscillator and the rigid rotator, both of which we have derived above
and are given as

G( ) + e - e e
2+ BJ(J+1)ν 𝐹(𝐽) =   ω (ν + 1/2)  ω χ (ν + 1/2)

Figure 7: Eigenstates of the vibrating rotator

Here B is different for different vibrational states thus the equation of the rotational

constant associated with a vibrational state is given as B =ν ν ℎ/8π2µ𝑐(1/𝑟2)ν

where ) is the mean value of ) in the vibration state during the(1/𝑟2
ν (1/𝑟2 ν

vibration. Where B can also be written asν



B = Be - e +...ν α (ν + 1/2)

Where e is a constant that depends on the shape of the potential curve ( e<< Be)α α
and Be is the rotational constant corresponding to the separation re at the minimum
of the potential curve and is given as

B = re2𝑒 ℎ/8π2µ𝑐

Now the term values for the vibrating rotator are given as

G( ) + e - e e
2+ B J(J+1)ν 𝐹(𝐽) =   ω (ν + 1/2)  ω χ (ν + 1/2) ν

and B ’< B ’’which means that the factor decreases slightly with increasingν ν ν.
Since the eigenfunctions for the vibrating rotator are the products of the
eigenfunctions of the oscillator and the rotator, the selection rules are the same as
for these systems individually, that is = … and =∆ν ±1, ±2, ±3, ∆𝐽 ±1

For J, both the transitions = are now valid in absorption as the two J levels∆𝐽 ±1
involved now belong to different vibrational levels. For a given vibrational
transition, the rotational transition = gives one set of lines known as the∆𝐽 + 1
‘R-branch’ while the rotational transition = gives another set of lines∆𝐽 − 1
known as the ‘P-branch’. All the lines of both branches form a vibration-rotation
band. The wave numbers of branch lines of a particular band are given byν',  𝑣'' 

= 0 + B ’J’(J’+1) + B ’’J’’(J’’+1)ν ν ν ν

where 0 = - is the wave number for pure vibrational transition(for J’ν 𝐺(ν') 𝐺(ν'')
= J” = 0) which is not allowed as cannot be zero and thus corresponds to the∆𝐽
missing line in the band. 0 is also known as the wave number of band origin.ν

R-branch

For = , so that = , we get the lines of the∆𝐽 𝐽' −  𝐽'' =  + 1 𝐽' −  𝐽'' =  + 1
R-branch with the wave number as



R = 0 + 2B ’ + 3B ’ -B ’’J’’ + B ’ -B ’’J’’2ν ν ν ν ν ν ν

where J’’, the lower rotational quantum number can take the values of zero and
positive integers. Thus the R-branch consists of a series of lines named as R(0),
R(1),R(2),... on the high-wave side of the band origin 0. Also B ’< B ’’ thereforeν ν ν

the line spacing decreases very slowly as J’’ takes on increasing values.

P-branch

For = , so that = , we get the lines of the∆𝐽 𝐽' −  𝐽'' =  − 1 𝐽' −  𝐽'' =  − 1
P-branch with the wave number as

P = 0 - (B ’ +B ’’J’’) + (B ’ -B ’’)J’’2ν ν ν ν ν ν

where J’’, the lower rotational quantum number can take the values of negative
integers. Thus the R-branch consists of a series of lines named as P(1), P(2),... on
the low-wave side of the band origin 0. Also B ’< B ’’ therefore the line spacingν ν ν

increases as J’’ takes on increasing values. If we neglect vibrational rotational
interaction B ’ = B ’’ = B then the wave numbers of the R and P branches wouldν ν

have equispaced lines. The resulting equation for both branches is the equation of
parabolas. Since they have common lower and upper states they should be
inter-related and by fitting them into the same parabolic equation we get

= 0 + (B ’ + B ’’)m + (B ’ - B ’’)m2ν ν ν ν ν ν

where m = J’’ +1 = 1,2,3,.. for R(0), R(1), R(2),...
where m = -J’’ = -1,-2,-3 for lines P(1), P(2),...
and m = 0 for zero gap 0ν

A plot for the above equation can be given as



Figure 8: Plot for R and P branch for vibrating rotator

where the dashed line corresponds to B ’ = B ’’. Since e is very small theν ν α
difference between B ’ - B ’’ is also very small. Hence the curve only slightlyν ν

deviates from the straight line. This is the main reason why vibration-rotation
bands show a very poor tendency for head formation. Where a band head is the
abrupt edge of a spectroscopic band. Thus rotational-vibration bands are always
degraded towards the lower wave number side towards red.
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